发布时间:2019-08-21 浏览量:1721
微纳米气泡器的控制系统
微纳米气泡器的产品简介|微纳米气泡器的工作原理|微纳米气泡器的特点及应用|微纳米气泡器的主要用途|微纳米气泡器的安装事项|微纳米气泡器的控制系统
微纳米气泡特点:
(1)水中停留时间长
一般的气泡在水中产生后,会很快上升到水面并破裂消失,即存在时间短。而微米气泡在水中由产生到最终破裂消失会有几十秒钟甚至达到几分钟。有研究数据标明,直径为1mm的气泡在水中的上升速度为6m/min,而直径为10um的气泡在水中的上升速度为3mm/min。可以看出,微米气泡在水中的上升速度非常缓慢,所以可在水中停留较长时间。微纳米气泡器的产品简介|微纳米气泡器的工作原理|微纳米气泡器的特点及应用|微纳米气泡器的主要用途|微纳米气泡器的安装事项|微纳米气泡器的控制系统。
(2)带电性
微米气泡表面带负电荷,而且相对于普通气泡,其所带负电荷比较高,一般30um以下的气泡的表面负荷在-40mV左右,这也是微米气泡能大量聚集在一起时间较长而不破裂的原因之一。利用微米气泡的带负电性,可以吸附水中带正电的物质,对去除水中悬浮物或污染物的吸附和分离起到很好的效果。
(3)自我增压和溶解
气泡内部的压力和表面张力有关,气泡的直径约小,内部压力越大。由于微米气泡的直径很小,比表面积很大,所以它内部的压力要比外界液体的压力大很多,而正式由于由于微米气泡的这种内部增压和比表面积大的优势,它的气体溶解能力是毫米级气泡的几百倍之多。因为溶解度与压力有很大关系,所以微米气泡内部压力增大到一定阙值时,会使界面达到过饱和状态,在将更多气泡内的气体溶解到水中的同时,自身也会慢慢溶解消失。微纳米气泡器的产品简介|微纳米气泡器的工作原理|微纳米气泡器的特点及应用|微纳米气泡器的主要用途|微纳米气泡器的安装事项|微纳米气泡器的控制系统。
(4)收缩性
微米气泡在水中产生后因为自身增压,会不断的收缩或膨胀,其直径是一直变化的。据最新研究标明,20um~40um的气泡会以1.3um/s的速度搜索到8um左右,然后收缩速度会土壤急剧增加,此后可能进一步分裂成纳米级气泡或者完全溶解于水中。
(5)界面动电势高
微米气泡的表面会吸附带电荷的离子如OH-,而在这OH-离子层周围,又会分布反电荷离子层如H+,这样微米气泡的表面就形成了双电层,双电层界面的电位又称为界面动电势,界面动电势的高低在很大程度上决定了微米气泡界面的吸附性能。因为微米气泡的收缩性,使得电荷离子在段时间内大量聚集在气泡的界面,一直到气泡完全破裂溶解之前,界面动电势一直都会增高,表现出对水中带电粒子的吸附性能越好。
纳米微气泡性质
1.比表面积大:
气泡的体积和表面积的联系可以通过公式标明,在总体积(V不变)的情况下,气泡总的表面积与单个气泡的直径成反比,10微米的气泡与1毫米的气泡相比较,在必定体积下前者的比表面积理论上是 后者的100倍。空气和水的触摸面积就增加100倍,各种反应速度也增加了100倍。
由于微细气泡的特别物理性使超微细气泡在水中逐步变小、相伴随的气泡内部压力相反的却是继续增加,最后约在4000大气压的压力下气泡分裂,这种分裂就是超微细气泡在水中溶解的共同反应现 象。微纳米气泡器的产品简介|微纳米气泡器的工作原理|微纳米气泡器的特点及应用|微纳米气泡器的主要用途|微纳米气泡器的安装事项|微纳米气泡器的控制系统。
2.自身增压溶解:
关于具有球形界面的气泡,表面张力能紧缩气泡内的气体,从而使更多的气泡内的气体溶解到水中。纳米气泡在水中的溶解是一个气泡 逐步缩小的进程,压力的上升会增加气体的溶解速度,跟着比表面积的增加,气泡缩小的速度变得越来越快,从而溶解到水中,理论上气泡即将消失时所受的压力无限大了!
3.电荷特性:
气泡在水中构成的气液界面具有简略承受H+和OH-扥特征,而且通常阳离子比阴离子更简略离开气液界面,而使界面常带有负电荷。当纳米微气泡在水中收缩时,电荷离子在非常狭小的气泡界面上得 到了快速浓缩富集,到气泡分裂前在界面处可构成非常高的点位值。微纳米气泡器的产品简介|微纳米气泡器的工作原理|微纳米气泡器的特点及应用|微纳米气泡器的主要用途|微纳米气泡器的安装事项|微纳米气泡器的控制系统。