发布时间:2019-08-23 浏览量:1822
微纳米气泡发生器的机械维护
微纳米气泡发生器的产品简介|微纳米气泡发生器的工作原理|微纳米气泡发生器的特点及应用|微纳米气泡发生器的主要用途|微纳米气泡发生器的安装事项|微纳米气泡发生器的机械维护
双电层界面的电位又称为界面动电势,界面动电势的高低在很大程度上决定了微米气泡界面的吸附性能。因为微米气泡的收缩性,使得电荷离子在段时间内大量聚集在气泡的界面,一直到气泡完全破裂溶解之前,界面动电势一直都会增高,表现出对水中带电粒子的吸附性能越好。产生自由基离子:一般来水,已经达到极高浓度的正负电荷瞬间放电将积蓄的能量释放,产生大量的自由基离子,如氧离子、氢离子、氢氧离子等。而其中的羟基自由基具有很强的氧化作用,可以氧化分解一些难以降解的有机污染物,起到很好的净化水质的效果。水体中氧的传递是使用空气和污水中氧气的浓度梯度,使氧气由高密度的空气向低密度的污水中搬运,因此氧气浓度梯度和触摸而积抉择了曝气效果。在氧气浓度梯度不变的条件下,空气与水体触摸而积是抉择曝气效果好坏的关键因素。微纳米气泡技术有用处理了气泡在水体中的触摸而积问题,其原因是因为微纳米气泡的表而积能有用增大,因此可以大大前进溶氧功率。一同,因为气泡的细微且具有出色的气浮性,可以在污水中长时间逗留,然后可以抵达完成较好曝气效果的目的。因为微纳米气泡发作设备作业原理及所发生的气泡巨细与惯例曝气设备有很大的不同,因此该设备发生的微纳米气泡具有以下独有特点。电离现象:气体在水中的溶解度受气压影响较大,但电解质的离子化水可以让溶入的微纳米气泡表而构成双层电离子,并跟着表而积的不断减少而急剧缩短,可以让气泡内的气体散逸得以抑制,然后大大前进了溶解度。超声波性:微纳米气泡因为高能分裂而发生超声波,这种超声波具有较强的杀菌效果。微纳米气泡发生器的产品简介|微纳米气泡发生器的工作原理|微纳米气泡发生器的特点及应用|微纳米气泡发生器的主要用途|微纳米气泡发生器的安装事项|微纳米气泡发生器的机械维护。
微纳米气泡发生器的特点:在水中长期停留时间在水中产生气泡后,它会迅速上升到表面并破裂消失,即存在时间短。从生产到最终破裂,微泡在水中可以是数十秒甚至数分钟。根据研究数据,直径为1毫米的气泡在水中以6米/分钟的速率上升,而直径为10微米的气泡在水中以3毫米/分钟的速率上升。可以看出微泡在水中上升非常缓慢,因此它们可以在水中停留很长时间。带电微气泡的表面带负电,与普通气泡相比,其负电荷相对较高。通常,低于30um的气泡的表面负荷为-40mV左右,这是微泡可以长时间聚集在一起而不会断裂的原因之一。利用微泡的负电荷,可以在水中吸附带正电的物质;微纳米气泡发生器的产品简介|微纳米气泡发生器的工作原理|微纳米气泡发生器的特点及应用|微纳米气泡发生器的主要用途|微纳米气泡发生器的安装事项|微纳米气泡发生器的机械维护。
纳米微气泡性质
1.比表面积大:
气泡总的表面积与单个气泡的直径成反比,10微米的气泡与1毫米的气泡相比较,在必定体积下前者的比表面积理论上是 后者的100倍。空气和水的触摸面积就增加100倍,各种反应速度也增加了100倍。
由于微细气泡的特别物理性使超微细气泡在水中逐步变小、相伴随的气泡内部压力相反的却是继续增加,最后约在4000大气压的压力下气泡分裂,这种分裂就是超微细气泡在水中溶解的共同反应现 象。
1.比表面积大
气泡的体积和表面积的关系可以通过公式表示。气泡的体积公式为 V=4π/3r3,气泡的表面积公式为 A=4 πr2,两公式合并可得 A=3V/r,即 V 总=n·A=3V 总/r。也就是说,在总体积不变(V 不变)的情况下,气泡总的表面积与单个气泡的直径成反比。根据公式,10 微米的气泡与 1 毫米的气泡相比较,在一定体积下前者的比表面积理论上是后者的 100 倍。空气和水的接触面积就增加了 100 倍,各种反应速度也增加了 100倍。微纳米气泡发生器的产品简介|微纳米气泡发生器的工作原理|微纳米气泡发生器的特点及应用|微纳米气泡发生器的主要用途|微纳米气泡发生器的安装事项|微纳米气泡发生器的机械维护。
2.上升速度慢
根据斯托克斯定律,气泡在水中的上升速度与气泡直径的平方成正比。气泡直径越小则气泡的上升速度越慢。从气泡上升速度与气泡直径的关系图可知,气泡直径 1mm 的气泡在水中上升的速度为 6m/min,而直径 10μm 的气泡在水中的上升速度为 3mm/min,后者是前者的 1/2000。如果考虑到比表面积的增加,微纳米气泡的溶解能力比一般空气增加 20 万倍。微纳米气泡发生器的产品简介|微纳米气泡发生器的工作原理|微纳米气泡发生器的特点及应用|微纳米气泡发生器的主要用途|微纳米气泡发生器的安装事项|微纳米气泡发生器的机械维护。
3.自身增压溶解
水中的气泡四周存有气液界面,而气液界面的存在使得气泡会受到水的表面张力的作用。对于具有球形界面的气泡,表面张力能压缩气泡内的气体,从而使更多的气泡内的气体溶解到水中。根据杨-拉普拉斯方程,?P=2σ/r,?P 代表压力上升的数值,,σ代表表面张力,r 代表气泡半径。直径在 0.1mm 以上的气泡所受压力很小可以忽略,而直径 10μm 的微小气泡 会受到 0.3 个大气压的压力,而直径 1μm 的气泡会受高达3 个大气压的压力。微纳米气泡在水中的溶解是一个气泡逐渐缩小的过程,压力的上升会增加气体的溶解速度,伴随着比表面积的增加,气泡缩小的速度会变的越来越快,从而溶解到水中,理论上气泡即将消失时的,微纳米气泡发生器的产品简介|微纳米气泡发生器的工作原理|微纳米气泡发生器的特点及应用|微纳米气泡发生器的主要用途|微纳米气泡发生器的安装事项|微纳米气泡发生器的机械维护。